工业废水处理

污水处理方法及原理

版权所有,翻版必究

处理污水的方法很多,一般可归纳为物理法、化学法和生物法等。

①物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。

废水重力分离处理法是利用重力作用原理使废水中的悬浮物与水分离,去除悬浮物质而使废水净化的方法。可分为沉降法和上浮法

沉降图片如下

 

上浮图如下:

 

其中气浮:

 

 

②生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。

活性污泥法是以活性污泥为主体的废水生物处理的主要方法。这种技术将废水与活性污泥(微生物)混合搅拌并曝气,使废水中的有机污染物分解,生物固体随后从已处理废水中分离,并可根据需要将部分回流到曝气池中。

活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。

该法是在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成活性污泥。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。

 

生物膜法

生物膜法是通过附着在载体或介质表面上的细菌等微生物生长繁殖,形成膜状活性生物污泥生物膜,利用生物膜降解污水中的有机物的生物处理方法。生物膜中的微生物以污水中的有机污染物为营养物质,在新陈代谢过程中将有机物降解,同时微生物自身也得到增殖。
随着微生物的不断繁殖增长,以及废水中悬浮物和微生物的不断沉积,使生物膜的厚度不断增加,其结果是使生物膜的结构发生变化。
在生物处理过程中,生物膜总是在不断地生长、更新和脱落的,造成生物膜不断脱落的原因有:水力冲刷、由于膜增厚造成重的增大、原生动物的松动、厌氧层和介质的粘结力较弱等。
生物膜法适用于中小规模污水生物处理,污水处理系统可以独立建立,也可以与其他污水处理工艺组合应用。污水进行生物膜法处理前,宜经沉淀处理,当进水水质或水量波动大时,应设置调节池。

 


③化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。

一般污水处理工艺这三种方法都含有,一般常说的物化和生化,其实说白了物化就是物理和化学相结合的方法,生化就是化学和微生物相结合的方法,方法有很多,但是怎么选择最佳的方法,需根据水质进行选择。

4.1一级处理

粗格栅,细格栅,水力筛等,可以很好的将大颗粒的渣物进行去除,且不会损坏后续工艺设备,比如堵塞水泵,破坏性摩擦推流器等等;

粗格栅图片如下:

 

细格栅图片如下:

 

水力筛图片如下:

 

A. 例如水体中含有大量小颗粒悬浮物(此悬浮物可以是泥沙,有机物颗粒,金属颗粒等),比重还比较大,水体看上去浑浊不堪,此时利用絮凝沉淀的方式,去除水利的悬浮物,不仅可以降低水体的各项指标,同时水体感观更好,减轻后续的处理负荷;

絮凝沉淀图片如下:

 

B. 例如水体中含有大量小颗粒悬浮物,油脂类等物质,比重比较小,水体有色素等,这时候可以选择絮凝气浮,不见可以快速去除悬浮,同时对脱色的效果更佳,(如若水体需要进行脱色,其絮凝剂选择含亚铁离子的絮凝剂,其亚铁离子和氢氧根离子在一起会有微小的氧化反应,可以对脱色,起到一定作用;

气浮设备图如下:

 

C. 例如水体中含有大量的重金属离子,一般选择通过化学法,进行离子捕捉沉淀,通过加一些加碱等方式,生成沉淀物,进行沉淀去除或回收;

六价铬处理方法如下:

1)含六价铬废水的化学还原法处理,主要包括药剂还原法、铁氧体法、铁屑铁粉还原法等。其基本原理是在酸性条件下,利用化学还原剂将六价铬还原成三价铬,然后用碱沉淀生成氢氧化铬沉淀而除去。

2)电镀废水中的六价铬主要以CrO,,一和Cr207 2一两种形式存在,随着废水pH的不同,两种形式之间存在着转换平衡:2Cr0,2一+2H+ v-. Cr2Or2-+H2OCr2072一+20H-一2C r20,2-+2H20可以看出在酸性条件下,六价铬主要以Cr20产一形式存在,碱性条件下,I9以CI 0,2一形式存在。但是,电镀含铬漂洗废水Cre+的浓度一般在20-r 100rng/1"范围之内,而且废水一般都在pH5以上,多数以Cr0,2一形式存在。

3)六价铬的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5一3,常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合阱、铁屑铁粉等。铬酸的还原反应式及还原剂的理论用量。

4)还原以后的Gr3+以Cr(OH):沉淀的最佳pH为7-9,一般控制在pH8,所以铬还原以后的废水应进行中和。常用的中和剂有NaOH、石灰。有的小型企业用粉煤灰、电石糊等废料中和。

5)含铬废水在考虑选择化学还原沉淀方法和还原剂、沉淀剂时,不仅要考虑铬的还原和去除效率,还要考虑药剂的来源和成本。同时,也应考虑沉淀污泥处置和利用的可能性。

一级处理也叫预处理,上述几个例子,属于一个预处理阶段,其不属于核心工艺,但对污水处理来说,它是最重要的阶段,后续所有的处理工艺,都是基于预处理进行污水处理的。

4.2二级处理

A. 例如水体经过预处理以后,水体里面的各项指标依旧很高(COD大于8000mg/L,总氮大于300mg/L),且可生化性好,这时候可以选择沼气池,厌氧塔等,其朝气产量很大,需注意相关的安全措施,也可以很好的利用这一部分沼气,一般情况下,每天产生100m³养殖废水,设计的厌氧塔停留时间15天左右,其每天产生的沼气量,可以供100kw的沼气发电机,连续工作10个小时,且厌氧塔出水COD在1000mg/L左右(市面上一般厌氧塔设计的停留时间较短,2--3天的样子,其属于未完全厌氧分解,比较难以控制出水水质);

UASB厌氧塔

1. UASB厌氧反应器的原理

在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程中。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。

在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。

在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。

由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。

2. UASB反应器的结构

 

USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。

在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。

特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。

三相分离器的设计,应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室。应该认识到有时污泥膨胀到沉淀器中不是一件坏事。相反,存在于沉淀器内的膨胀污泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用。

另一方面,存在一定可供污泥层膨胀的自由空间,以防止较重的污泥在暂时性有机或水力负荷冲击下流失是很重要的。水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床的膨胀。

USAB系统原理是在形成沉降性能良好的污泥絮体的基础上,并结合在反应器内设置污泥沉淀系统,使气体、液体和固体得到分离,形成和保持沉淀性能良好的污泥(颗粒或者絮状污泥),是USAB系统良好运行的根本点。

IC厌氧塔

它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。

混合区:反应器底部进水、颗粒污泥和气液分离区回流的泥水混合物有效地在此区混合。

第1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水混合物被沼气提升至顶部的气液分离区。

气液分离区:被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。

第2厌氧区:经第1厌氧区处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入第2厌氧区。该区污泥浓度较低,且废水中大部分有机物已在第1厌氧区被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,对第2厌氧区的扰动很小,这为污泥的停留提供了有利条件。

沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。

从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。

 


B. 例如水体经过预处理以后,水体里面的各项指标依旧很高(COD大于8000mg/L,总氮大于300mg/L),可生化性差,或水体中含有大量有毒物质,不利于微生物存活,这时候可以选择强氧化性的工艺,如芬顿氧化,光催化氧化,添加次氯酸,臭氧,电解等等,也可以选择过滤工艺和蒸发工艺,如超滤,纳滤,反渗透,蒸发器等等,上述工艺均属于高投资,高运行成本工艺,使用前,需慎重考虑;

芬顿氧化

一、芬顿反应的原理

反应原理

过氧化氢(H2O2)与二价铁离子Fe的混合溶液把大分子氧化成小分子把小分子氧化成二氧化碳和水,同时FeSO4可以被氧化成3价铁离子,有一定的絮凝的作用,3价铁离子变成氢氧化铁,有一定的网捕作用,从而达到处理水的目的。

二、Fenton试剂法的优点

Fenton试剂是一种常用的高级氧化技术,相对其他氧化剂而言,其在黑暗中就能破坏有机物,具有操作过程简单、反应易得、运行成本低廉、设备投资少且对环境友好性等优点。

三、芬顿反应在污水处理的应用

 

Fenton系统工艺流程简述

在二沉池出水井用Fenton供料泵送至Fenton氧化塔,将废水中难以降解的污染物氧化降解,Fenton氧化塔出水自流至中和池,在中和池投加液碱,将废水中和至中性;中和池废水自流至脱气池中,通过鼓风搅拌,将废水中的少量气泡脱除;脱气池出水自流至混凝反应池中,在该池中投加絮凝剂PAM并进行充分反应,使废水中铁泥絮凝;混凝反应后的废水自流至终沉池,将其中的铁泥沉淀,上清液达标排放。终沉池铁泥由污泥泵送至原污泥处理系统进行处理。

DTRO膜法

DT膜技术即碟管式膜技术,分为DTRO(碟管式反渗透)、DTNF(碟管式纳滤)和DTUF(碟管式超滤)两大类,是一种专利型膜分离设备。

碟管式膜技术最初是针对渗滤液处理开发的,随着技术的提高,已经可以应用到其他的污水处理上,DT膜膜柱独特的结构使其在垃圾渗滤液处理中可达到最低程度的结垢和污染现象,使用寿命长,组件易于维护,虽初始造价高但过滤膜片更换费用低。

DT膜技术源于反渗透原理,因此碟管式膜技术是目前为止最精密的膜分离技术,它可以阻挡全部的溶解盐以及分子量超过100的有机物,但水分子可以通过。其中醋酸纤维膜的脱盐率通常高于95%,复合膜的脱盐率通常高于98%。

DTRO膜对CODcr的去除率可达99%,对氨氮的去除率约为98%,对BOD的去除率99%,对盐的去除率可达98%,其中COD和盐的去除率尤为显着,出水水质达标。

当污水经过超滤系统出水后,会经芯式过滤器过滤后进入DTRO膜柱,在DTRO膜柱前设置有高压泵及减震器,高压泵用于给DTRO膜提供足够的压力,减震器可以使后端的DTRO膜柱可以获得较为平稳的压力。此外,为了保证DTRO膜表面流速,DTRO膜部分浓缩液回流至膜柱入口,通过在线增压泵的作用,再进入DTRO膜柱。DTRO膜柱浓缩液端设有压力调节阀,用于控制膜组内的压力,以达到必要的净水回收率,系统最终产生的浓缩液排入浓缩液收集池。

为了方便查看现场处理情况,在DTRO膜系统的进水管和出水管都设置了流量传感器和电导率仪,用于监测进水和产水流量和电导率。各循环泵、高压 柱塞泵、膜内循环管路、清液管路和浓缩液管路上都设置了压力传感器,监控每个环节的压力,并配有PH传感器和温度传感器实时监测清液及浓缩液的变化情况。

 

C. 例如水体经过预处理以后,水体里面的各项指标依旧不是很高,但是可生化性差,或水体中含有大量有毒物质,不利于微生物存活,这时候可以选择破坏高分子有机物的工艺,如芬顿氧化,光催化氧化,添加次氯酸,臭氧等等,只需对有机分子进行破坏,其设计的氧化工艺相对来说小很多,其投资,运行成本较上述工艺小很多;

光催化氧化

光催化是偶然一次事件,对放入水中的氧化钛单晶进行紫外灯照射,结果发现水被分解成了氧和氢而发现的。通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。

光催化剂的种类其实很多,包括二氧化钛(TiO2),氧化锌(ZnO),氧化锡(SnO2),二氧化锆(ZrO2),硫化镉(CdS)等多种氧化物硫化物半导体,另外还有部分银盐,卟啉一等也有催化效应,但他们基本都有一个缺点-----存在损耗,即反应前和反应后其本身会出现消耗,而且它们大部分对人体都有一定的毒性。所以,目前所知的最有应用价值的光催化材料,就是TiO2。

优点:操作简单、能耗低、无二次污染、效率高。

1)直接用空气中的氧气做氧化剂,反应条件温和(常温 常压)

2)可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。

3)半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。

上述工艺属于二级处理,其最主要的目的,满足三级处理的条件,同时在某种程度可以降低后续处理负荷。

4.3三级处理

4.3.1活性污泥法

(1)SBR法
序列间歇式活性污泥法(的简称,是一种按间歇曝气办法来运转的活性污泥污水处理技能,又称序批式活性污泥法。
SBR技能的核心,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流体系。
长处:
1)工艺简略,节约费用
2)抱负的推流进程使生化反响推力大、效率高
3)运转办法灵敏,脱氮除磷效果好
4)防治污泥胀大的zui好工艺
5)耐冲击负荷、处理才能强

 

(2) CASS法
CASS(Cyclic Activated Sludge System)是周期循环活性污泥法的简称,CASS法是SBR法的改进型,特色是占地小、运转费用低、技能成熟、工艺安稳。
CASS法是在SBR池前部设置生物挑选区,后部设置可升降的主动滗水设备。

ASS法是在间歇式活性污泥法(SBR法)的基础上演变而来,它是在CASS反应池前部设置了生物选择区,后部设置了可升降的自动滗水装置。其工作过程可分为曝气、沉淀和排水三个阶周期循环进行。污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。根据进水水水质可对运行参数进行调整。

CASS工艺分预反应区和主反应区。在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH值和有毒害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的其质降解过程。CASS工艺集反应、沉淀、排水功能于一体,污染物的降解在时间上是一个推流过程而微生物则处于好氧、缺氧、庆氧周期性变化之中,从而达到对污染物的去除作用,同时还具有较好的脱氮、除磷功能。经过模拟试验研究,CASS工艺已成功应用于生活污水、食品废水、制药废水的治理,并取得了良好的处理效果。


(3)AO法
AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
长处:
1)体系简略,运转费低,占地小
2)以原污水中的含碳有机物和内源代谢产物为碳源,节约了投加外碳源的费用
3)好氧池在后,可进一步去除有机物
4)缺氧池在先,因为反硝化耗费了部分碳源有机物,可减轻好氧池负荷
5)反硝化发作的碱度可补偿硝化进程对碱度的耗费


AO工艺即缺氧好氧工艺(Anoxic Oxic),是一种改进型的采用活性污泥法的污水处理工艺,不仅可以降解有机物,还具有一定的除磷脱氮效果。

AO工艺将缺氧和好氧生化工艺串联起来,其中,缺氧段溶解氧DO的浓度控制在0.2mg/L以下,好氧生化段溶解氧DO的浓度控制在2-4mg/L。

缺氧段主要依靠异养菌将废水中的大分子有机物、悬浮物、可溶性有机物通过水解作用,分解成小分子有机物,提高废水的可生化性。同时,在缺氧段,异养菌可以将污染物分子链上的氨基断链,产生游离态氨。

好氧段主要依靠硝化菌通过硝化作用将氨氧化成硝态氮、亚硝态氮。最后,将好氧段泥水混合液回流至缺氧段,在反硝化菌的作用下,将硝态氮反硝化成氮气,完成对N元素的降解作用。

AO工艺流程图

AO工艺主要特点有:

(1)前段缺氧池中的反硝化菌可以充分利用反硝化菌,减轻好氧池的有机负荷;

(2)后段好氧池可以进一步降解缺氧段为降解的有机污染物,提高对有机污染物的去除效率;

(3)工艺流程简单,运行费用低;

(4)耐负荷冲击能力强。

 

AO工艺影响因素有:

(1)MLSS污泥浓度。污泥浓度一般大于3000mg/L,否则将影响脱氮效果;

(2)DO溶解氧值。缺氧段DO值一般不大于0.2mg/L,好氧段DO值一般在2-4mg/L;

(3)TKN/MLSS负荷率。硝化反应中,TKN/MLSS负荷率不大于0.05gTKN/(gMLSS·d);

(4)BOD/MLSS负荷率。BOD/MLSS负荷率不大于0.18kgBOD/(gMLSS·d);

(5)泥水混合液回流比。泥水混合液回流比R的大小直接影响反硝化脱氮效果,R值越大,脱氮效果越好,运行电耗越大;

(6)缺氧池BOD/N值。BOD/N大于4,可以保证有较好的反硝化效果,否则反硝化速率迅速降低;

(7)pH值。最佳硝化反应的pH值为8.0-8.4,最佳反硝化反应的pH值为6.5-7.5;

(8)温度。硝化反应温度为20-30℃,低于5℃反硝化反应几乎停止;反硝化反应温度为20-40℃,低于15℃反硝化反应速率迅速下降。


(4)AAO法
AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic*个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有杰出的脱氮除磷效果。
长处:
1)本工艺在体系上可以称为zui简略的同步脱氮除磷工艺,总水力停留时间少于其他类工艺
2)在厌氧(缺氧)、好氧替换运转条件下,丝状菌不能很多增殖,不易发作污泥丝状胀大,SVI值一般小于100
3)污泥含磷高,具有较高肥效
4)运转中勿需投药,两个A段只用悄悄拌和,以不增加溶解氧为度,运转费用低

AAO是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。但AAO工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

 工艺流程

AAO工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。AAO工艺于70年代由美国专家在厌氧—好氧磷工艺(AO)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。

 

该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。

 工艺原理

1、首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。

2、在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。

3、在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。

AAO工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除磷功能。

 工艺特点

(1)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。

(3)在厌氧一缺氧一好氧交替运行下,丝状菌不会大量繁殖,SVI一般100不会发生污泥膨胀。

(4)污泥中磷含量高,一般为2.5%以上。

(5)脱氮效果受混合液回流比木小的影响,除磷效果则受回流污泥中夹带D0和硝酸态氧的影响,因而脱氮除磷效率不可能很高。


(5)氧化沟法
氧化沟是活性污泥法的一种变型,其曝气池呈关闭的水沟型,所以它在水力流态上不同于传统的活性污泥法,它是一种首尾相连的循环流曝气水沟,污水进入其间得到净化,zui早的氧化水沟不是由钢筋混凝土建成的,而是加以护坡处理的土水沟,是间歇进水间歇曝气的,从这一点上来说,氧化沟zui早是以序批办法处理污水的技能。

除具有一般活性污泥法的长处外,还具有许多共同的特性:
1)流程简化,一般不需设初沉池。氧化沟水力停留时间和污泥龄较长,有机物去除较为完全,剩余污泥高度安稳,污泥一般不需厌氧消化。
2)氧化沟具有推流特性,因此沿池长方向具有溶解氧梯度,别离构成好氧、缺氧和厌氧区。通过合理规划和控制可使N和P得到较好地去除。
3)控制灵敏,如曝气强度可以通过调理转速或通过出水溢流堰来改动曝气机的吞没深度;替换式氧化沟各沟间替换运转的动态控制等。
4)在技能上具有净化程度高、耐冲击、运转安稳牢靠、操作简略、运转办理便利、维修简略、出资少、能耗低一级特色。

 

自1920年英国sheffield建立的污水厂成为氧化沟技术先驱以来,氧化沟技术一直在不断的发展和完善。其技术方面的提高是在两个方面同时展开的:一是工艺的改良;二是曝气设备的革新。

氧化沟利用连续环式反应池(ContinuousLoop Reator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环。氧化沟通常在延时曝气条件下使用。氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。

氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。

氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。因此相比传统活性污泥法,可以省略调节池、初沉池和污泥消化池,有的还可以省略二沉池。氧化沟能保证较好的处理结果,这主要是因为巧妙结合了CLR形式和曝气装置特定的定位布置,使得氧化沟具有独特水力学特征和工作特性。

(1)氧化沟结合推流和完全混合的特点,有利于克服短流和提高缓冲能力。

通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。入流通过曝气区在循环中很好地被混合和分散,混合液再次围绕CLR继续循环。这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。

同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内有较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。

 

(2)氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。

氧化沟从整体上说又是完全混合的,液体流动却保持着推流前进,其曝气装置是定位的,因此,混合液在曝气区内溶解氧浓度是上游高,然后沿沟长逐步下降,出现明显的浓度梯度,到下游区溶解氧浓度就很低,基本上处于缺氧状态。

氧化沟设计可按要求安排好氧区和缺氧区实现硝化-反硝化工艺,不仅可以利用硝酸盐中的氧满足一定的需氧量,而且可以通过反硝化补充硝化过程中消耗的碱度,这些有利于节省能耗和减少甚至免去硝化过程中需要投加的化学药品数量。

(3)氧化沟沟内功率密度的不均匀配备,有利于氧的传质,液体混合和污泥絮凝。

传统曝气的功率密度一般仅为20-30W/m3,平均速度梯度G大于100秒-1。这不仅有利于氧的传递和液体混合,而且有利于充分切割絮凝的污泥颗粒。当混合液经过平稳的输送后到达好氧区后期,平均速度梯度G小于30s-1,污泥仍有再絮凝的机会,因而也能改善污泥的絮凝性能。

(4)氧化沟的整体功率密度较低,可节约能源。

氧化沟的混合液一旦被加速到沟中的平均流速,对于维持循环仅需克服沿程和弯道的水头损失,因而氧化沟可比其他系统以低得多的整体功率密度来维持混合液流动和活性污泥悬浮状态。据国外的一些报道,氧化沟比常规的活性污泥法能耗降低20%-30%。

另外,据国内外统计资料显示,与其他污水生物处理方法相比,氧化沟具有处理流程简单、操作管理方便、出水水质好、工艺可靠性强、基建投资少、运行费用低等特点。

所以,就市政污水处理来讲,如果氮磷去除负担不是太重的情况下,选择氧化沟工艺是较为常见的,就其工艺而言仍然是围绕活性污泥法基本原理进行的。

 

4.3.2生物膜法

(1)生物滤池
 一种用于处理污水的生物反响器,内部填充有慵懒过滤资料,资料外表成长生物群落,用以处理污染物。
长处:
1)生物滤池的处理效果十分好,在任何时节都能满足各地zui严格的环保要求。
2)不发作二次污染。
3)微生物可以依托填猜中的有机质成长,无须另外投加营养剂。因此停工后再运用发动快,且能敏捷康复佳运用效果。
4)生物滤池缓冲容量大,能主动调理浓度顶峰使微生物一直正常作业,耐冲击负荷的才能强。
5)运转选用全主动控制,十分安稳,无须人工操作。易损部件少,保护办理十分简略,基本可以完结无人办理,工人只需视是否有机器发作故障。
6)生物滤池的池体选用拼装式,便于运输和设备;在增加处理容量时只需增加组件,易于施行;也便于气 源涣散条件下的别离处理。
7)此类过滤方式的生物滤池能耗十分低,在运转半年之后滤池的压力丢失也只有500Pa左右。

在滤池内设置固定的滤料,当废水自上而下滤过时,由于废水不断与滤料相接触,因此微生物就在滤料表面繁殖,逐渐形成生物膜。生物膜是由多种微生物组成的一个生态系统,从废水中吸取有机污染物作为营养源,在代谢过程中获得能量,并形成新的微生物机体。

   当生物膜形成并达到一定厚度时,氧就无法透入生物膜内层,造成内层的厌氧状态,使生物膜的附着力减弱。此时,水流的冲刷下,生物膜开始脱落,随后在滤料上又会生长新的生物膜。如此循环往复。废水流经生物膜后得已净化。

   普通的生物滤池主要由池体、滤料、布水装置和排水系统四部分组成,普通滤池的优缺点:普通生物滤池适用于水量不大于1000立方的小城镇污水或有机工业废水。其优点是处理效果好,BOD去除率可达95以上稳定,易于管理,节约能源。主要缺点是占地面积大,不适于处理大水量污水:滤料易堵塞,卫生条件差。

 高负荷生物滤池与普通生物滤池在构造上基本相同,其不同之处主要有:在平面上多呈圆形,滤料直径增大,多采用40-100mm,滤料层亦由底部的承托层0.2m,无机滤料粒径上70-100mm和其上的工作层。同时,由于大大提高了水力负荷,对滤料的冲刷力加大,使生物膜加快脱落,减少了滤池的堵塞,但产泥量也增加。

 


(2)生物转盘
一种好氧处理污水的生物反响器,由水槽和一组圆盘构成,圆盘下部浸没在水中,圆盘上部暴露在空气中,外表成长有生物群落,滚动的转盘循环往复触摸污水和空气中的氧,使污水得到净化。
长处:
1)具有占地面积小、结构紧凑
2)能耗低、处理效率高
3)办理便利、操作简略
特别适用于中小型畜禽加工厂污水处理

生物转盘(Rotating Biological Contactor,简称RBC)是一种生物膜法污水处理技术,20世纪60年代由原联邦德国开创,是在生物滤池的基础上发展起来的,亦称为浸没式生物滤池。

该工艺具有系统设计灵活、安装便捷、操作简单、系统可靠、操作和运行费用低等优点;不需要曝气,也无需污泥回流,节约能源,同时在较短的接触时间就可得到较高的净化效果,现已广泛应用于各种生活污水和工业污水的处理。其净化有机物的机理与生物滤池基本相同,但构造形式却与生物滤池不同。

 

生物转盘是用转动的盘片代替固定的滤料,工作时,转盘浸入或部分浸入充满污水的接触反应槽内,在驱动装置的驱动下.转轴带动转盘一起以一定的线速度不停地转动。转盘交替地与污水和空气接触,经过一段时间的转动后,盘片上将附着一层生物膜。在转入污水中时,生物膜吸附污水中的有机污染物,并吸收生物膜外水膜中的溶解氧,对有机物进行分解,微生物在这一过程中得以自身繁殖;转盘转出反应槽时,与空气接触,空气不断地溶解到水膜中去,增加其溶解氧。在这一过程中,在转盘上附着的生物膜与污水以及空气之间,除进行有机物(BOD、COD)与O2的传递外.还有其他物质,如CO2、NH3等的传递,形成一个连续的吸附、氧化分解、吸氧的过程,使污水不断得到净化 。


(3)生物膜接触氧化池
结构包含池体,填料,布水设备,曝气设备。作业原理为:在曝气池中设置填料,将其作为生物膜的载体。待处理的废水经充氧后以必定流速流经填料,与生物膜触摸,生物膜与悬浮的活性污泥共同效果,到达净化废水的效果。
长处:
1)容积负荷高,耐冲击负荷才能强;
2)具有膜法的长处,剩余污泥量少;
3)具有活性污泥法的长处,辅以机械设备供氧,生物活性高,泥龄短;
4)能分化其它生物处理难分化的物质;
5)简略办理,消除污泥上浮和胀大等坏处。


 

生物接触氧化法,以附着在填料上的生物膜为主,在填料塔内设置一定密度的填料,在充氧的条件下,微生物在填料的表面形成生物膜,污水浸没全部填料并与填料上的生物膜广泛接触,通过微生物的新陈代谢作用,将污水中的有机物转化为新生质和CO2,污水因此得以净化。

工艺流程图:

 

一、生物接触氧化池填料的选取

生物接触氧化池填料塔内,填料是生物膜赖以栖息的场所,是生物膜的载体。因此,载体填料是氧化池的关键,直接影响着生物接触氧化法的效能。对于载体填料通常的要求是:有一定的生物膜附着能力;比表面积大;空隙率大,水流阻力小;强度大,化学和生物稳定性好,经久耐用;截留悬浮物质能力强;不溶出有害物质,不引起二次污染;与水的比重相差不大,以免过分地增大氧化池荷重;形状规则,尺寸均一,使之在填料间形成均一的流速;及运输和施工安装方便等。污水处理站氧化池内选用生物膜附着能力强、水力学特性好和价格便宜的尼龙纤维填料,填料层高度为3米,填料成立体状上下固定在填料支架上。

综上所述,填料选用:组合纤维填料。组合填料集软性和半软性填料之优点,其结构由纤维束、塑料环片、套管、中心绳组成,克服了两者的弊端,在污水的生化处理过程中为较理想的产品。它是有塑料环为骨架,负载着维纶丝,维纶丝紧固在塑料环上,在污水中丝束分布均匀,易生膜、换膜,并对污水浓液的适应性好,氧的利用率高。

二、生物氧化池内的曝气设备及曝气的作用

生物氧化池内曝气设备有罗茨鼓风机、曝气管和曝气头。其曝气头采用充氧效率高、经久耐用的微孔橡胶模曝气头。氧化池内曝气的主要作用:

1、充氧:生物接触氧化法主要是利用好氧性细菌完成生物净化作用的方法。微生物的氧化、合成内源呼吸需要氧。所以除了营养物质外,氧是保证微生物正常生长的一个重要条件。供氧使氧化池内的溶解氧控制在一个相当的水平上。

2、充分搅拌,形成紊流,从流体力学的观点来看,供氧使池内水流充分搅动,形成紊流,紊流越甚,被处理水与生物膜的接触效率越高,传质效率越好,从而提高处理效果。

3、防止填料发生堵塞,促进生物膜更新:供气的搅动作用使填料上衰老的生物膜及时剥落,防止填料堵塞。同时还促进生物膜更新,提高处理效果。氧化池在运行过程中池内溶解氧的含量通过调节罗茨鼓风机供风量来实现。


4.3.3厌氧生物处理法


厌氧生物处理法是运用兼性厌氧菌和专性厌氧菌将污水中大分子有机物降解为低分子化合物,进而转化为甲烷、二氧化碳的有机污水处理办法,分为酸性消化和碱性消化两个阶段。

在酸性消化阶段。由产酸菌排泄的外酶效果,使大分子有机物变成简略的有机酸和醇类、醛类氨、二氧化碳等;在碱性消化阶段,酸性消化的代谢产物在甲烷细菌效果下进一步分化成甲烷、二氧化碳等构成的生物气体。

这种处理办法首要用于对高浓度的有机废水和粪便污水等处理。
长处:
1)能耗低;
2)可收回生物动力(沼气);
3)每去除单位质量底物发作的微生物(污泥)少;
4)整个进程不需要氧气,因此不受传氧才能约束,对有机物具有很高的负载力。

黑膜沼气池图片如下:

 

钢结构支架,黑膜密封图片如下:

 

上述所有工艺绝大部分属于二级处理,全部属于生物法,工艺类型很多,但是可以总结出三点,其所有工艺的基础,在于厌氧,缺氧,好氧:

A.好氧池是营造好氧的环境(溶解氧在2-4),利于好养微生物生长。其作用是好氧活性污泥吸附、降解有机物。通常将有机物中的碳元素氧化化合物氧化为CO2和H2O;将氮元素氧化为亚硝酸盐氮及硝酸盐氮;磷元素氧化为磷酸根......。同时在好氧的环境下聚磷菌吸收几倍于厌氧条件下的磷酸根。

B.缺氧池是营造缺氧的环境(溶解氧在小于0.5),利于缺养微生物生长。其作用是活性污泥吸附、降解有机物。通常将回流混合液中的亚硝酸盐氮及硝酸盐氮在反硝化菌的作用下生成氮气释放。

C.厌氧池是营造厌氧的环境(溶解氧约为零),利于厌养微生物生长。其作用是活性污泥吸附、降解有机物。通常回流混合液中的聚磷菌在条件下释放磷酸根。

4.4出水处理

三级处理一般为污水处理的最后阶段,一般有消毒杀菌,中水回用,脱色。

消毒杀菌的方式有紫外线消毒杀菌,有效氯消毒杀菌,次氯酸钠等方式;

中水回用方式有超滤,纳滤,反渗透等中水回用,也有直接出水中水回用;

其目的:

(1)防止病原体播散到社会中,引起流行发生。

(2)防止病者再被其他病原体感染,出现并发症,发生交叉感染。

(3)同时也保护医护人员免疫感染。

利用消毒剂杀灭生活污水或某些工业废水中有害的病原微生物的水处理过程。生活污水和某些工业废水中含有大量的细菌、病毒、孢囊等,经传统的二级生化处理后,仅能去除90%左右的大肠菌,为了防止疾病的传播,在二级生化处理后还要对污(废)水进行消毒处理,然后在排放至受纳水体或作为他用。常用的消毒剂有氯、次氯酸钠、二氧化氯、臭氧等。或者利用超滤等过滤方式,紫外线消毒杀菌等方法保证出水细菌数量。

其中的二氧化氯不仅可用于消毒杀菌,还可以用作氧化剂、脱臭剂、杀生剂、保鲜剂、漂白剂等。

 二氧化氯因为其具有杀菌能力强,对人体及动物没有危害以及对环境不造成二次污染等特点而备受人们的青睐。二氧化氯不仅是一种不产生致癌物的广谱环保型杀菌消毒剂,而且还在杀菌、食品保鲜、除臭等方面表现出显著的效果。

二氧化氯还可以用于漂白,如纺织与造纸元采用氯气漂白的都可以用二氧化氯替代。

二氧化氯的主要用途在自来水的消毒,和面粉与木质纸浆的漂白。

二氧化氯发生器

 

4.5广东地方标准

4.5.1控制区划分

根据GHZB 1和GB 3097,将全省水域、海域划分为下列三类控制区;
a)特殊控制区,指根据GHZB 1划分为I、II类的水域和III类水域中划定的保护区、游泳区及GB 3097划分为一类的海域;
b)一类控制区,指根据GHZB 1划分为III类的水域(划定的保护区、游泳区除外)以及GB 3097划分为二类的海域;
c)二类控制区,指根据GHZB 1划分为IV、V类的水域和GB 3097划分为三类、四类的海域。

4.5.2标准分级

1)特殊控制区内禁止新建排污口,现有排污口执行一级标准且不得增加污染物排放总量。
2)排入一类控制区的污水执行一级标准。
3)排入二类控制区的污水执行二级标准。
4)各控制区执行相应级别标准,受纳水体不符合功能水质要求时,应对排污口实行水污染物排放总量控制,以满足功能水质标准。
5)排入建成运行的城镇二级污水处理厂的污水执行三级标准。
6)排入未设置或未运行的二级污水处理厂的城镇排水系统的污水,应根据排水系统出水受纳水域、海域的功能要求。

版权所有,翻版必究